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Bayesian analysis of level-spacing distributions for chaotic systems with broken symmetry
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Bayesian inference is applied to the nearest-neighbor and next-nearest-neighbor spacing distributions of
levels of coupled superconducting microwave billiards. The weakly coupled resonators are equivalent to a
quantum system with a partially broken symmetry. The coupling parameters are obtained with help from
Bayes’s theorem. This procedure does not require the introduction of a set of bins. The results are more
accurate than those obtained from other bin-independent procedures.
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I. INTRODUCTION

Bayesian inference is the process of fitting a probabi
model to a set of data and summarizing the result by a
tribution of the parameters of the model. The Bayes
method has found a wide application in numerous branc
of science@1#. It has only recently been applied to the ana
sis of the statistical properties of energy spectra@2#. There,
the authors considered the resonance spectra of a pa
electromagnetically coupled superconducting microwa
resonators, each having the shape of a quarter of a Bunim
ich stadium billiard@3#. The mean number variance—usua
called theS2 statistic—has been investigated in@2# for six
different physical couplings. Although the six cases were
tentionally chosen to be close to each other and to the
Gaussian orthogonal ensembles~GOE’s! behavior, Bayesian
inference yielded an accurate description of the coup
strengths.

The present paper reports a further analysis of the exp
ment of Ref.@3#. We consider the nearest-neighbor-spac
~NNS! and the next-to-nearest-neighbor-spacing~NNNS!
distributions of levels of the coupled billiards. The spacing
denoted bys. A parameterq is inferred that specifies th
coupling strength. The distributionp of s conditioned by the
parameterq is the statistical modelp(suq). The models for
the NNS and the NNNS are discussed and defined in Sec
and III, respectively.

Experimental distributions are usually represented by
tograms and the parameters of the statistical model are
termined by help of ax2 fit. However, the shape of a histo
gram depends on the choice of the bins. Even if this effec
small, it will influence the result, when small changes of t
parameters have to be distinguished. This is the case in
present investigation. Furthermore, the error introduced
the choice of the bins is not assessed by thex2 fit. The
Bayesian method directly deals with the measured spac
and not with some representation of their distribution.

Bayesian data analysis usually proceeds in three st
First, one proposes a probability distribution for the obse
able s conditioned by the parameterq to be determined.
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Within the logic of statistical inference,q is called the hy-
pothesis; the observedN spacingss5$si%, with i 51, . . . ,N,
are called the events. In the second step, one calculate
distributionq given the eventss. This is called the posterio
distribution P(qus). The third step is to provide a ‘‘fit,’’ i.e.
the optimumq together with a suitable error.

In Sec. II the three-step Bayesian procedure is applied
the NNS distributions of six measured spectra. Each sp
trum corresponds to a certain physical coupling of the re
nators of Ref.@3#. In the experiment, the coupling is con
trolled by an electromagnetic connection between
resonators, see Refs.@2,3#. The measured spectra show
gradual transition from the two GOE’s statistics to that o
GOE as the coupling strength increases. We assign the N
distribution that one of the present authors has previou
proposed@4# for the level statistics of systems with mixe
regular-chaotic dynamics. The formula interpolates betw
the Wigner and Poisson distributions by tuning the proba
ity q that the system is ‘‘locally’’ regular. Nevertheless, th
formula provides a good approximation to the NNS distrib
tion for spectra formed by superposingm independent level
sequences@5#. In this case, the parameterq512^ f &, where
^ f & is the mean fractional level density of the superimpos
sequences. The spectra under consideration@2# are close to
this case withm52 with initial level densities nearly 0.4 an
0.6. We apply this formula to describe the observed transi
from two GOE’s to a single GOE by varying the parameteq
from nearly 0.5 to 0. In Sec. III we propose a similar formu
for the NNNS distribution and use it in another Bayesi
analysis of the same data aiming at the same parameter.
tion IV compares the results of the present analysis with
previous Bayesian analysis of the level number variance
the same billiards@2#. The summary and conclusions a
given in Sec. V.

II. ANALYSIS OF NNS DISTRIBUTIONS

The first step in Bayesian inference is to assign a con
tional probability densityp for the NNS’s, given the param
eterq. We use the expression proposed in@4# for a system of
mixed regular-chaotic dynamics. This formula is deriv
with the help of a simple approach due to Wigner@6#. He
writes the probability densityp of the NNS in the form

p~0,s!5r ~0,s!expS 2E
0

s

r ~0,x!dxD . ~1!

y,
©2002 The American Physical Society21-1
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Here,r (0,s)ds is the conditional probability—given a leve
at energyE and no level in the interval (E,E1s)—that the
next level occurs within (E1s,E1s1ds). The function
r (0,s) is the level-repulsion function of order 0. Later—
Sec. III—the higher order level repulsion functionr (n,s)
will play a role. It is the conditional probability—given
level at E and n levels in the interval (E,E1s)—that the
next level occurs within (E1s,E1s1ds). Similarly, p(n,s)
is Wigner’s density for higher order neighbors.

Note that we use Mehta’s notation@7# for the function
p(0,s) instead of the frequently usedP(s) in order to have
analogous notation for the high-order spacing distributio
Also we reserve capitalP to the posterior distribution intro
duced below.

For a regular system, one takesr (0,s)5r P(s)51 to ob-
tain the Poisson distribution. For a chaotic system descri
by a GOE random matrix, the choicer (0,s)5r W(s)
5(p/2)s leads to the Wigner distribution. For a mixed sy
tem, Ref. @4# suggests that the level repulsion function
taken to be a linear superposition ofr P and r W :

r ~0,s!5q1
p

2
~12q!s. ~2!

Here, the parameterq is the probability that the splitting o
close levels is too small to be observed. Hence,q is a mea-
sure for the regular fraction of the classical phase spa
Substituting Eq.~2! into Eq. ~1! yields the expression

p~0,s!5Fq1
p

2
~12q!sGexpF2qs2

p

4
~12q!s2G ~3!

for the NNS distribution. This formula provides an interp
lation between the Wigner (q50) and the Poisson (q51)
distributions. It has successfully been applied to anal
spacing distributions of many atomic nuclei@8#.

Formula~3! provides an accurate description for the NN
distribution of a spectrum formed by superposingm indepen-
dent and uncoupled GOE sequences. This is shown in
@5#. Using a method elaborated by Mehta@7#, an expression
is obtained for the cumulative spacing distribution. Its log
rithm is then expanded in powers ofs keeping only the lead-
ing two terms. This approximation yields an expression
the NNS distribution of the form~3! with q512^ f &, where
^ f &5S i 51

m f i
2 is the mean fractional level density for the s

perimposed sequences; the statistical weight of each
quence is given again by its fractional density. In the case
the superposition of two independent sequences of fracti
densitiesf and 12 f , one setsq equal to

q52 f ~12 f !. ~4!

Formula~3! then provides a good approximation to the NN
distribution. More arguments in favor of this approximatio
will be corroborated below.

We shall apply formula~3! also to the case when the tw
superposed GOE sequences are coupled to each othe
varying the parameterq from an initial value of 2f 0(1
2 f 0), with f 0<1/2, to 0 we hope to be able to describe t
05622
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transition from 2-GOE statistics to that of a GOE. Hence,
effect of coupling is modeled by artificially allowing on
sequence to grow at the expense of the other. The GOE l
is reached when one sequence practically dominates
spectrum. We shall obtain in Sec. IV an ‘‘empirical’’ relatio
between the parameterq and the strength of coupling be
tween the sequences when the coupling is described by
perturbation theory.

Unfortunately, expression~3! does not satisfy the condi
tion

E
0

`

sP~s!ds51 ~5!

of unit mean spacing. This deficiency is, however, imma
rial, as we describe now.

One can satisfy condition~5! if one transformss in Eq. ~3!
to s/s0. This yields

p~0,s!5
1

s0
Fq1

p

2
~12q!

s

s0
GexpF2q

s

s0
2

p

4
~12q!S s

s0
D 2G .

~6!

Here,s0 is determined by Eq.~5! to be

s05A12qe2q2/p(12q)/erfc@q/Ap~12q!# ~7!

and erfc(x)5(2/Ap)*x
`e2t2dt is the complementary erro

function.
We have convinced ourselves that formula~6! provides a

good approximation to the NNS distributions of superpos
GOE sequences by studyingm52 uncoupled level se-
quences of equal density. According to Eq.~4!, the approxi-
mation is obtained by settingq51/2 in Eq. ~6!. We have
calculated thekth moment,k52, . . .,10, of the approximate
and the exact NNS distributions. The exact distribution
given by Eq.~13! of Ref. @5#. In Table I, the moments of the
approximate and the exact distributions are compared to e
other. The agreement is good. This justifies the use of dis
bution ~6! for uncoupled billiards. It is used to describe th
NNS of the coupled billiards of Ref.@3#. In the absence of
coupling, they correspond to the superposition of two GO
sequences with fractional densityf 050.4. The correction in-
troduced by allowing fors0 to differ from unity is so small
that the remainder of the analysis has been done with
simpler formula~3!.

Strictly speaking, formula~3! is inappropriate in the pres
ence of coupling between the billiards. Coupling removes
accidental level degeneracies so thatP(s) must go to 0 ass
tends to 0. In spite of this, formula~3! has been successfull
applied to the analysis of mixed systems like hydrogen ato
in strong magnetic fields@4# and atomic nuclei at low excited
states@8#. It produced equally good fits to the data as t
celebrated Brody formula which satisfies the conditi
P(0)50. Thus the previous experience suggests that w
the coupling is small enough, this effect influences only
small domain ofs, usually much smaller than the width o
the bins of the empirical histogram. The success of Eq.~3! is
1-2
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TABLE I. The moments of the NNS and NNNS distributions of two independent level sequences of
density. The exact values are given under the headings ‘‘Two GOE’s.’’ They are compared to the ap
mations~6! or ~22!. See text. The first column gives the orderk of the moments.

Moment order NNS NNNS
Two GOE’s Eq.~6! Two GOE’s Eq.~22!

2 1.4917 1.4831 4.6988 4.7202
3 2.7760 5.9231 12.466 12.442
4 6.0237 5.9231 36.462 36.020
5 14.704 14.403 115.70 112.83
6 39.492 38.587 393.74 378.38
7 114.94 112.17 1424.6 1347.5
8 358.53 349.88 5443.1 5063.4
9 1188.6 1161.3 21 844 19 975
10 4161.0 4074.7 91 668 82 375
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demonstrated in Fig. 1, which indicates that this is indeed
situation for the coupled billiards under consideration.

In the experiment@3#, two superconducting microwav
resonators were electomagnetically coupled. Each reson
had the shape of a quarter of a Bunimovich stadium billi
and was manufactured from niobium sheets. The electrom

FIG. 1. The NNS distributions, calculated using Eq.~3! with the
best valuesq0 of the parameterq ~smooth curves!. For comparison,
the empirical distributions obtained in the experiment@3# are given.
They are represented by histograms and labeled by the phy
coupling (x1 ,x2). Note, however, that the present analysis does
make use of a histogram.
05622
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netic coupling was achieved by putting the two resonators
top of each other, drilling holes through the adjacent wa
and allowing one or two superconducting niobium pins
penetrate the two resonators via the holes. The coup
strength depends on the penetration depths (x1 ,x2) of the
coupling pin into either resonator. The values ofx1 andx2 in
mm are used in the sequel to characterize the physical
pling of the resonators. The experiment provides sets
spacingssi for each of the couplings~8,0!,~5,3!,~4,4!,~8,6!,
and for a coupling by two pins with penetrations~8,6!. This
strongest coupling is labeled ‘‘two~8,6!.’’ The number of
levels observed in both resonators together was about 1
This large number of levels is crucial for the followin
analysis. It is a characteristic feature of experiments w
superconducting microwave cavities@9#.

We proceed to the second step of Bayesian inference f
the NNS distribution. It shall express the coupling (x1 ,x2)
by the parameterq. To this end, one needs the joint probab
ity distribution p(suq) of the spacingss5(s1 ,s2 , . . . ,sN).
Taking the experimentalsi to be statistically independen
this is

p~suq!5)
i 51

N

p~0,si !. ~8!

Bayes’s theorem provides the posterior distribution

P~qus!5p~suq!m~q!/M ~s! ~9!

of the parameterq given the eventss. Here, m(q) is the
so-called prior distribution andM (s)5*0

1p(suq)m(q)dq is
the normalization. We use Jeffreys’s rule@10# to find the
prior distribution:

m~q!5U E p~suq!@] ln p~suq!/]q#2dsU1/2

. ~10!

It ensures—at least approximately—unbiased inference@11#
of q. We evaluate this integral numerically. It diverges atq
5 0, where it is proportional to (2 ln q)1/2. Otherwise,m(q)
is a very slowly varying function. It decreases from the val

cal
t
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TABLE II. The best values and errors of the parameterq obtained via Bayesian analysis from the NN
and NNNS distributions of levels of two coupled billiards. The first column gives the physical cou
(x1 ,x2) explained in the text. The last two columns are the determination ofq from the previous analysis o
level number varianceS2 @2# and the variance of the NNS distribution as explained in Sec. V, respecti

Coupling NNS NNNS S2 Moments

~8,0! 0.5260.03 0.5060.03 0.4860.02 0.516009
~5,3! 0.4560.03 0.4460.03 0.4260.02 0.4560.10
~4,4! 0.4360.03 0.4360.03 0.3960.02 (0.4360.10
~8,6! 0.4160.03 0.4060.03 0.3460.02 0.3960.10

Two ~8,6! 0.3460.04 0.3960.03 0.3760.10
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of 0.5049 atq50.1 to the minimum of 0.3952 atq50.5 and
then monotonically increases to become equal to 0.571
q50.9. As a consequence,m(q) can be considered consta
and equal tom(q0) in the present analysis, whereq0 is not
far from the value of 0.5. This simplifies the Bayesian ana
sis becausem(q) drops out of Eq.~9!. Note, however, that
this only seems to make the analysis independent ofm. It is
the present parametrization that renders the posterior d
bution nearly independent ofm. A reparametrization of the
problem, i.e., the transition fromq to a monotonic function
of q, can alter this situation.

To numerically evaluate the posterior distribution, w
have expressed Eq.~8! in the form

p~suq!5e2Nf(q), ~11!

where

f~q!5q^s&1
p

4
~12q!^s2&

2 K lnFq1
p

2
~12q!sG L . ~12!

Here, the notation

^x&5
1

N (
i 51

N

xi ~13!

has been used. For each of the six couplings, we found
functionf(q) to have a single minimum at, say,q5q0. One
can therefore represent the numerical results if one par
etrizesf as

f~q!5A1B~q2q0!21C~q2q0!3. ~14!

The values of the coefficients (A,B,C) for the above-
mentioned six couplings are ~0.920,0.392,20.134!,
~0.898,0.356,20.057!, ~0.893,0.328,20.020!, ~0.891,0.345,
20.038!, ~0.883,0.360,20.054!, and ~0.873, 0.268, 0.034!,
respectively. Substituting Eqs.~11! and~14! into Eq. ~9!, we
obtain

P~qus!5ae2(q2q0)2/2s0
2
, ~15!
05622
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where a5m(q)exp@2AN2CN(q2q0)
3#/M(s) and s0

51/A2BN. In the present analysis, the number of spacin
for each coupling is so large (N@1500) that a Gaussian
function ~15! very well describes theq dependence ofP,
which means that the third order term in Eq.~14! is imma-
terial. It has been introduced to convince ourselves of
fact that it is small. Indeed, in the six cases under consid
ation, the posterior distribution nearly vanishes except in
range of the order ofuq2q0u<s0.0.03. In this range, the
function m(q) is nearly constant and the quantityCNuq
2q0u3<0.002, so thata can be regarded constant. Its valu
is

a51/A2ps0 . ~16!

Therefore, the parameter distributions obtained in this an
sis are Gaussians. Each one is characterized by a mean
q0 and a variances0. Table II gives the values ofq06s0
obtained for each physical coupling. Figure 1 shows a co
parison of the NNS distributions calculated by Eq.~3! using
the most-probable valuesq0 of the parameterq, together
with the empirical distributions. The empirical distribution
are given by histograms. We emphasize, however, that
Bayesian analysis does not make use of the histogram.

The Gaussian approximation@Eqs. ~15! and ~16!# can
only be obtained if the dependence of the prior distribut
m(q) on the parameterq can be ignored. This excludes cas
for which the parameterq is expected to be close to zero
Bayesian analysis of theS2 statistic for the same data carrie
out in @2# uses the model for symmetry breaking by Leitn
et al. @12#. The analysis shows that the posterior distributi
is different from a Gaussian when the symmetry-break
strength is expected to be zero. The present results toge
with those of Ref.@2# indicate that the posterior distribution
obtained in Bayesian analysis are well represented by Ga
ian functions except if the true value ofq is close to the ends
of the domain whereq is defined. The meaning of ‘‘at the
end’’ depends, however, on the amountN of events that one
has collected: The largerN is, the closer to the ‘‘end’’ can the
true value be for the posterior to be Gaussian.

III. ANALYSIS OF NNNS DISTRIBUTIONS

As in the preceding section, we start by assigning a pr
ability density to the spacing between a given level and
level next to its nearest neighbor. This density will parame
1-4
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BAYESIAN ANALYSIS OF LEVEL-SPACING . . . PHYSICAL REVIEW E65 056221
cally depend on the coupling parameterq. Reference@13#
reports a number of models for the calculation of the NN
distributions; but the expressions are quite cumbersome.
want to have the simplest formula that has as much in c
mon as possible with Eq.~6! of the preceding section. Fo
this purpose we start from a generalization of Wigner’s
gument that led to Eq.~1!. The generalization has been pr
posed by Engelet al. @14#. It is the recursion relation

p~n,s!5r ~n,s!E
0

s

p~n21,x!

3expS 2E
x

s

r ~n,y!dyD dx ~17!

for the nth order level-spacing distribution. Thenth order
level repulsion functionr (n,s)ds has been explained in con
nection with Eq.~1!. Equation~17! was used in@15# to pro-
pose a generalization of the Wigner surmise for the high
order level-spacing distribution of chaotic systems. In R
@15# it was found that Eq.~6! yields wrong results for large
values ofs when r (0,s) is taken to be proportional tosb if
b.1. It was therefore assumed in Ref.@15# that Eq.~17! is
correct only at small values ofs. This yields within the lead-
ing order ins

p~n,s!}r ~n,s!E
0

s

p~n21,x!dx for s!1. ~18!

An expression for thenth order level-spacing distribution o
a system described by the GOE that is valid in the wh
domain ofs is obtained by multiplying expression~18! with
a Gaussian function ofs. Moreover, it was assumed in@15#
that the occurrence of consecutive levels in a chaotic sys
is an uncorrelated random process. This allows us to exp
the probabilityr (n,s) of occurrence of the (n11)th level at
a distances in terms of the probabilityr (0,s) so that

r ~n,s!5@r ~0,s!#n11. ~19!

These assumptions led in@15# to expressions for thenth
order level-spacing distributions, withn50, . . . ,7, for the
Gaussian orthogonal, unitary, and symplectic ensemb
They almost perfectly agreed with the exact results repo
in Mehta’s book@7#. In particular, the NNNS distribution
obtained in@15# for a system described by a GOE is given

pW~1,s!5aWs4 expS 2
16

9p
s2D , ~20!

whereaW52(16/9p)3.
We can now obtain the NNNS distribution of levels of

mixed system. Equations~18! and~19! together with the an-
satz~2! yield

p~1,s!}Fq1
p

2
~12q!sG2Fqs1

p

4
~12q!s2G for s!1.

~21!
05622
e
-

-

r-
f.

e

m
ss

s.
d

To obtain an expression valid for alls, we multiply the right-
hand side of Eq.~21! by an exponential whose argument
again a linear superposition ofr P and r W as in Eq.~3!. In
analogy with Eq.~6!, the variables is transformed tos/s1 in
order to satisfy the condition that the expectation value of
s is 2. All this finally yields

p~1,s!5
b

s1
Fq1

p

2
~12q!

s

s1
G2

3Fq
s

s1
1

p

4
~12q!S s

s1
D 2G

3expF2q
s

s1
2

16

9p
~12q!S s

s1
D 2G . ~22!

The quantitiesb ands1 are determined from the conditions

E
0

`

p~1,s!ds51 and E
0

`

sp~1,s!ds52. ~23!

Formula ~22! interpolates between the Poisson distrib
tion for the NNNS for q51 and the generalized Wigne
distribution ~20! for q50. If q50.5, it provides a good ap
proximation to the NNNS distributions obtained in@13# for
the superposition of two independent GOE sequences ha
the same density.

To show this, we calculated thekth moment, k
52, . . .,10, of the NNNS distribution for a superposition o
two GOE level sequences of equal density. The exact exp
sion is given by Eq.~25! of Ref. @13#. In Table I its moments
are compared to the moments of the approximation~22!. The
agreement is good except for the highest moments, wh
anyway measure the behavior of the distribution at spaci
where the probability density is small.

As in the case of the NNS distribution, we sets151. The
normalization factor is approximated by

b5
16

p3
aW exp~n!, ~24!

n51.0388q10.49093q220.56813q310.71021q4,
~25!

where the preexponential factor is chosen such that Eq.~22!
yields the GOE result~20! whenq50.

We proceed to the next step of the Bayesian analysis
define the joint distributionp1 of s, given the parameterq, by

p1~suq!5)
i 51

N

p~1,si !. ~26!

As in Sec. II, the measured spacingssi are considered as
statistically independent events.

In analogy with Eq.~10!, the prior distribution is

m1~q!5u E p1~suq!@] ln p1~suq!/]q#2dsu1/2. ~27!
1-5
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It is easy to show by numerical calculation thatm1(q) is a
slowly varying function for 0.1,q,0.9 and can be consid
ered constant in the present context—very much as in S
II. Similarly to Eq. ~11!, the joint probability density of the
NNNS is represented as

p1~suq!5S 16

p3
aWD N

e2Nf1(q), ~28!

where

f1~q!5q^s&1
16

9p
~12q!^s2&

2n2 K 2 lnFq1
p

2
~12q!sG

1 lnFqs1
p

4
~12q!s2G L . ~29!

We numerically evaluate the functionf1(q) and again rep-
resent the results by the parametrizationf1(q)5A11B1(q
2q1)21C1(q2q1)3. The values of the coefficient
(A1 ,B1 ,C1) for the six physical couplings ar
~20.424,0.520,0.244!, ~20.461,0.469,0.247!, ~20.457,
0.443,0.121!, ~20.473,0.435,0.083!, ~20.456,0.446,0.116!,
and ~20.491,0.417,0.393!, respectively. The posterior distr
bution for the NNNS is defined in analogy with Eq.~9!. With
the help of Eqs.~27! and ~28!, one obtains

P1~qus!5a1e2(q2q1)2/2s1
2
. ~30!

Here

a15m1~q!S 16

p3
aWD N

3exp@2A1N2C1N~q2q1!3#/M1~s!, ~31!

M1~s!5E
0

1

p1~suq!m1~q!dq, ~32!

and

s151/A2B1N. ~33!

Sinces1 is small, the dependence ofa1 on q is negligible
and thereforeP1 is Gaussian anda1 has the valuea1

51/A2ps1.
In Table II, the values ofq1 ands1 are given in the form

of q16s1. Figure 2 shows the NNNS distributionsp(1,s),
calculated by Eq.~22! with q set equal toq1, together with
the empirical distributions. The latter ones are represente
histograms, although the Bayesian analysis does not ref
a histogram. In some cases, the theoretical curves are slig
shifted towards larger spacing. The reason for the shift is
we have set the quantitys1 in Eq. ~22! equal to unity, which
05622
c.

by
to
tly
at

leads to a somewhat too large mean spacing. We have d
so in order to keep the analysis as simple as possible.

IV. COMPARISON WITH AN ANALYSIS
OF THE NUMBER VARIANCE

A Bayesian analysis of the level number varianceS2 for
the coupled billiards under consideration are given in@2#.
The authors of this paper use a formalism developed
Leitner @12# by applying the perturbation theory to the co
pling between two chaotic billiards. Leitner considers
Hamiltonian consisting of a sum of a block-diagonal matr
representing the case when the symmetry is conserved, a
perturbation responsible for symmetry breaking. When
symmetry has two eigenvalues, the Hamiltonian takes
form

H5S H1 0

0 H2
D 1«S 0 V

V† 0 D , ~34!

whereH1 , H2, andV are GOE matrices having same rm
value v so that«51 makesH as a whole to be a GOE
matrix. In the simplest case of two sequences of equal fr
tional density, the NNS distributionPL , where the subscrip
L stands for Leitner, is given by@12#

FIG. 2. The NNNS distributions, calculated using Eq.~22! with
the best valuesq0 of the parameterq ~smooth curves!. For compari-
son, the empirical distributions obtained in the experiment@3# are
given. See the caption of Fig. 1.
1-6
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PL~s,L!5cNcDFA p

32L
I 0S cD

2 s2

16L D se2cD
2 s2(112pL)/16L

1
p

8
se2pcD

2 s2/16erfcSAp

8
cDsD G , ~35!
un
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05622
where I 0(x) is a Bessel function,L5(«/D)2, andD is the
mean level spacing. The coefficientscN and cD are set so
that PL is normalized and̂s&51, respectively. The normal
ization integral can be solved analytically leading to the f
lowing expression forcN :
cN5
cD

121/A511/A2~11pL!
, ~36!

cD5

2F $2415p210 arctan~1/2!%/5p1A2pL~112pL!23/2FS 3

4
,
5

4
;1;

1

~11pL!2D G
121/A511/A2~11pL!

, ~37!
-

of

ond-
and
al

are
ith
ns
to-
ns

ins
whereF(a,b;c;z) is the hypergeometric function@17#. We
have not succeeded in expressing the hypergeometric f
tion in the expression forcD in terms of elementary func
tions. Thus, each term of the distribution~35! contains a
special function of a special function. This makes using
~35! in a Bayesian analysis of the NNS distribution mu
more complicated than using Eq.~3!. Moreover, its deriva-
tion does not allow a simple generalization to obtain high
order level-spacing distributions.

Leitner’s approach leads, on the other hand, to the follo
ing simple expression for a level-number variance in a sp
tral interval of lengthr:

SL
2~r ,a!5SGOE

2 ~r !1
1

p2
ln~11a2r 2!, ~38!

wherea5p/2(t1p2L) andt is determined by the require
ment thatSL

2(r ,p/2t) coincides with that of two indepen
dent GOE sequences, whileSGOE

2 is the level-number vari-
ance for a GOE@16#. This formula has been successful
used in@2# to obtain the coupling parameterL for the bil-
liards presently under consideration by Bayesian inferen

We would like to compare the results of the earlier ana
sis of the number variance reported in Ref.@2# with those of
the present analysis of the NNS and NNNS distributions.
this purpose, we need a relation between the parameterq of
Eqs.~3! and~22! and the parametera ~or L, equivalently! of
Eq. ~38!. We recall that Eqs.~3! and ~22! are used as a
representation for the corresponding formulas for the spa
distribution of two independent sequences of fractional d
sitiesf and 12 f . In the same spirit, we represent the numb
variance statistic~38! by a sum of two GOE terms with th
corresponding level densities:

SL
2~r ,a!>SGOE

2 ~ f r !1SGOE
2 ~$12 f %r !. ~39!

We find the relation between the coupling parametera ~or
effective perturbation strengthL) and the fractional densityf
by minimizing the quantity
c-

.

r-

-
c-

.
-

r

g
-

r

x25
4

N (
k51

N FSGOE
2 ~ f r !1SGOE

2 ~$12 f %r !2SL
2~r ,a!

SGOE
2 ~ f r !1SGOE

2 ~$12 f %r !1SL
2~r ,a!

G 2

~40!

with respect toa for different values off. The results are
given in Table III for N520. The small values ofx2 that
minimize Eq.~40! justify the approximation~39!. Thex2-fit
values ofa almost linearly depend onf (12 f ) for not-too-
small values off. We may conclude that Eq.~38! holds when

a5c1f ~12 f ! ~41!

with c158.9460.04 for 0.2, f ,0.5. Comparing Eqs.~4!
and~41! we obtain the following relation between the param
etersq of Eqs. ~3! and ~22! and the parametera or L of
Leitner’s formulas:

q5c2a5
c3

t1p2L
, ~42!

wherec252/c1 andc35p/c1. This relation allows the com-
parison with the previous analysis of the number variance
levels of the coupled billiards under consideration@2#. Table
II gives the values ofq calculated by Eq.~42! using the
values ofL reported in@2# from the analysis ofS2. These
values are, on the average, 10% smaller than the corresp
ing values obtained in the present analysis of the NNS
NNNS distributions. This difference lies within the statistic
errors.

V. SUMMARY AND CONCLUSIONS

The statistical analyses of level-spacing distributions
among the most popular methods to study systems w
mixed regular-chaotic classical dynamics. The distributio
of the data are usually represented in the form of a his
gram. A formula that interpolates between the distributio
for a regular and a chaotic system by tuning a parameterq is
adjusted to the empirical histogram. The choice of the b
1-7
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will influence the value of the parameter that results from
fit. The present paper suggests using the method of Baye
inference for the evaluation of the parameter. This analy
deals with the spacings directly, and bypasses the introd
tion of a histogram.

We have demonstrated the application of the Bayes
analysis by the example of the spacing distributions fr
two weakly coupled superconducting microwave billiard
For the NNS distribution, a formula has been used that w
previously proposed by one of the present authors. This
mula sets a reasonable approximation for the superpos
of independent sequences of chaotic spectra. We use
describe the transition from the two GOE statistics to tha
a single GOE. For the NNNS distribution, an analogous f
mula has been derived in the present paper. Both distr
tions depend on one and the same parameterq that measures
the strength of the coupling between both microwave re
nators.

In the two cases, the prior distributions only weakly d
pend on the parameterq except for the vicinity of the ends 0
and 1 of its range. The spectra under consideration co
spond to values ofq&0.5. The resulting posterior distribu
tions of q for both the NNS and NNNS cases, are narro
Gaussians. Their mean values and variances are give

TABLE III. Least square fit of Leitner’s formula for the numbe
varianceS2 of two chaotic systems interacting with strength e
pressed by the parametera to the corresponding formula for two
independent level sequences with fractional densitiesf and 12 f .

f a x2

0.50 2.226 6.8931027

0.45 2.203 7.5631027

0.40 2.138 9.4131027

0.35 2.029 1.3831026

0.30 1.877 2.3931026

0.25 1.682 4.9431026

0.20 1.443 1.1931025

0.15 1.161 3.0831025

0.10 0.831 7.7531025

0.05 0.451 1.7031024
,
B.

-

s
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Table II. The accuracy obtained for the parameterq is in the
range of 6–8 %. Within this error, the values ofq obtained
from both observables, the NNS and the NNNS, are
agreement—as they should be. They also agree with the
come of a previous Bayesian analysis of the number varia
of the levels of the same billiards using a perturbative f
malism developed by Leitner. This comparison is done
deducing a numerical relation between the parameterq and
the perturbation strength.

The accuracy can be compared with that of another w
to obtainq—a way that shares with Bayesian inference t
feature to bypass the introduction of a histogram. One
calculate the mean square value of the NNS distribut
p(0,s) as a function ofq. From the experimental mea
square value together with its error one can then inferq. The
result is given in Table II under the heading ‘‘Moments.’’ I
this case, the accuracy is in the range of 25–30 %. Ther
no theorem available that would prove the Bayesian e
interval to be smaller than that obtained with the help of a
statistic—such as the second moment used above. How
from the experience that we have gained in the course of
present study, this may be so. If this is true, however, th
neither the NNS nor the NNNS provides the most prec
determination of the coupling parameterq since both of them
are a statistic, i.e. a function of the primary data set, which
the spectrum as a whole. One would therefore like to b
the Bayesian analysis on the distribution of the whole sp
trum conditioned byq. This model, however, is not available
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