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Bayesian analysis of level-spacing distributions for chaotic systems with broken symmetry

A. Y. Abul-Magd* C. Dembowski’, H. L. Harney, and M. H. Simbel
Max-Planck-Institut fu Kernphysik, D-69029, Heidelberg, Germany
(Received 19 December 2001; revised manuscript received 27 February 2002; published 21 May 2002

Bayesian inference is applied to the nearest-neighbor and next-nearest-neighbor spacing distributions of
levels of coupled superconducting microwave billiards. The weakly coupled resonators are equivalent to a
guantum system with a partially broken symmetry. The coupling parameters are obtained with help from
Bayes’s theorem. This procedure does not require the introduction of a set of bins. The results are more
accurate than those obtained from other bin-independent procedures.
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[. INTRODUCTION Within the logic of statistical inferencey is called the hy-
pothesis; the observed spacingss={s;}, withi=1,... N,
Bayesian inference is the process of fitting a probabilityare called the events. In the second step, one calculates the
model to a set of data and summarizing the result by a disdistributionq given the events. This is called the posterior
tribution of the parameters of the model. The BayesiardistributionP(q|s). The third step is to provide a “fit,” i.e.
method has found a wide application in numerous branchehe optimumg together with a suitable error.
of sciencd 1]. It has only recently been applied to the analy- In Sec. Il the three-step Bayesian procedure is applied to
sis of the statistical properties of energy spe¢fh There, the NNS distributions of six measured spectra. Each spec-
the authors considered the resonance spectra of a pair tim corresponds to a certain physical coupling of the reso-
electromagnetically coupled superconducting microwavenators of Ref[3]. In the experiment, the coupling is con-
resonators, each having the shape of a quarter of a Bunimo¥olled by an electromagnetic connection between the
ich stadium billiard 3]. The mean number variance—usually resonators, see Reff2,3]. The measured spectra show a
called the3? statistic—has been investigated[i2] for six ~ gradual transition from the two GOE'’s statistics to that of a
different physical couplings. Although the six cases were in-GOE as the coupling strength increases. We assign the NNS
tentionally chosen to be close to each other and to the twdistribution that one of the present authors has previously
Gaussian orthogonal ensemb[&OE’s) behavior, Bayesian proposed4] for the level statistics of systems with mixed
inference yielded an accurate description of the couplingegular-chaotic dynamics. The formula interpolates between
strengths. the Wigner and Poisson distributions by tuning the probabil-
The present paper reports a further analysis of the experity g that the system is “locally” regular. Nevertheless, this
ment of Ref.[3]. We consider the nearest-neighbor-spacingformula provides a good approximation to the NNS distribu-
(NNS) and the next-to-nearest-neighbor-spaciigNNS) tion for spectra formed by superposingindependent level
distributions of levels of the coupled billiards. The spacing issequence$5]. In this case, the parametgr=1—(f), where
denoted bys. A parameterq is inferred that specifies the (f) is the mean fractional level density of the superimposed
coupling strength. The distributiomof s conditioned by the sequences. The spectra under considerd@prare close to
parameter is the statistical modep(s|q). The models for this case withm=2 with initial level densities nearly 0.4 and
the NNS and the NNNS are discussed and defined in Secs. 0.6. We apply this formula to describe the observed transition
and lll, respectively. from two GOE'’s to a single GOE by varying the parameter
Experimental distributions are usually represented by hisfrom nearly 0.5 to 0. In Sec. Ill we propose a similar formula
tograms and the parameters of the statistical model are déer the NNNS distribution and use it in another Bayesian
termined by help of a2 fit. However, the shape of a histo- analysis of the same data aiming at the same parameter. Sec-
gram depends on the choice of the bins. Even if this effect igion IV compares the results of the present analysis with the
small, it will influence the result, when small changes of theprevious Bayesian analysis of the level number variance for
parameters have to be distinguished. This is the case in tttbe same billiard§2]. The summary and conclusions are
present investigation. Furthermore, the error introduced bgiven in Sec. V.
the choice of the bins is not assessed by tfefit. The
Bayesian method directly deals with the measured spacings Il. ANALYSIS OF NNS DISTRIBUTIONS
and not with some representation of their distribution. . . . . . )
Bayesian data analysis usually proceeds in three steps. The first step in Bayesian inference is to assign a condi-

First, one proposes a probability distribution for the obsery-ional probability density for the NNS's, given the param-

able s conditioned by the parameter to be determined. eterg. We use the expression proposec[4ﬂ1for a system of
mixed regular-chaotic dynamics. This formula is derived

with the help of a simple approach due to Wighét. He
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Here,r(0,s)ds is the conditional probability—given a level transition from 2-GOE statistics to that of a GOE. Hence, the
at energyE and no level in the intervalf,E+s)—that the  effect of coupling is modeled by artificially allowing one
next level occurs within E+s,E+s+ds). The function sequence to grow at the expense of the other. The GOE limit
r(0,s) is the level-repulsion function of order 0. Later—in is reached when one sequence practically dominates the
Sec. lll—the higher order level repulsion functioiin,s)  spectrum. We shall obtain in Sec. IV an “empirical” relation
will play a role. It is the conditional probability—given a between the parameter and the strength of coupling be-
level atE andn levels in the interval E,E+s)—that the tween the sequences when the coupling is described by the
next level occurs withinE+s,E+s+ds). Similarly, p(n,s)  perturbation theory.
is Wigner’s density for higher order neighbors. Unfortunately, expressiofB) does not satisfy the condi-
Note that we use Mehta’s notatidi] for the function tion
p(0,) instead of the frequently usd®l(s) in order to have
analogous notation for the high-order spacing distributions. 0
Also we reserve capitd® to the posterior distribution intro- f o sP(s)ds=1 ®)
duced below.
_For a regular system, one take,s)=rp(s)=1 to ob-  f ynjit mean spacing. This deficiency is, however, immate-
tain the Poisson distribution. For a chaotic system describefly| as we describe now.
by a GOE random matrix, the choice(0.s)=ry/(s) One can satisfy conditiofs) if one transformsin Eq. (3)
=(m/2)s leads to the Wigner distribution. For a mixed sys- g g/s,. This yields
tem, Ref.[4] suggests that the level repulsion function is
taken to be a linear superpositiongf andr: 1 - s s s\2
_ IO(O,S)—SO g+ 2(1 Q)SO exp{ qSo 4(1 q)(s())

r(0,s)=q+ E(l—q)s. (2 (6)

Here, s, is determined by Eq(5) to be

Here, the parameter is the probability that the splitting of
close levels is too small to be observed. Herpés a mea-
sure for the regular fraction of the classical phase space. So=1—qe "=V erfd g/ m(1—q)] (7)
Substituting Eq(2) into Eq. (1) yields the expression )
and erfck)=(2/\7) [ e!
iy ) function.
expg —gqs— Z(l_Q)s ) We have convinced ourselves that form(& provides a
good approximation to the NNS distributions of superposed
for the NNS distribution. This formula provides an interpo- GOE sequences by studyingi=2 uncoupled level se-
lation between the Wignerg=0) and the PoissongE1) qguences of equal density. According to E4), the approxi-
distributions. It has successfully been applied to analyzenation is obtained by setting=1/2 in Eq. (6). We have
spacing distributions of many atomic nuc]@i. calculated th&th momentk=2, . . .,10, of the approximate
Formula(3) provides an accurate description for the NNSand the exact NNS distributions. The exact distribution is
distribution of a spectrum formed by superposingndepen-  given by Eq.(13) of Ref.[5]. In Table I, the moments of the
dent and uncoupled GOE sequences. This is shown in Refipproximate and the exact distributions are compared to each
[5]. Using a method elaborated by Melifd, an expression other. The agreement is good. This justifies the use of distri-
is obtained for the cumulative spacing distribution. Its loga-bution (6) for uncoupled billiards. It is used to describe the
rithm is then expanded in powers @keeping only the lead- NNS of the coupled billiards of Ref3]. In the absence of
ing two terms. This approximation yields an expression forcoupling, they correspond to the superposition of two GOE
the NNS distribution of the forni3) with q=1—(f), where  sequences with fractional density=0.4. The correction in-
(fy=3M 2 is the mean fractional level density for the su- troduced by allowing fors, to differ from unity is so small
perimposed sequences; the statistical weight of each séhat the remainder of the analysis has been done with the
quence is given again by its fractional density. In the case o$impler formula(3).
the superposition of two independent sequences of fractional Strictly speaking, formuld3) is inappropriate in the pres-

dt is the complementary error

p(0s)=|q+ g(l—q)s

densitiesf and 1—f, one setg] equal to ence of coupling between the billiards. Coupling removes the
accidental level degeneracies so tRés) must go to 0 as
q=2f(1-f). (4)  tends to 0. In spite of this, formul@) has been successfully

applied to the analysis of mixed systems like hydrogen atoms

Formula(3) then provides a good approximation to the NNSin strong magnetic fieldst] and atomic nuclei at low excited
distribution. More arguments in favor of this approximation states[8]. It produced equally good fits to the data as the
will be corroborated below. celebrated Brody formula which satisfies the condition

We shall apply formuld3) also to the case when the two P(0)=0. Thus the previous experience suggests that when
superposed GOE sequences are coupled to each other. Bye coupling is small enough, this effect influences only a
varying the parameteq from an initial value of Zy(1 small domain ofs, usually much smaller than the width of
—fo), with fu=<1/2, to 0 we hope to be able to describe thethe bins of the empirical histogram. The success of(Buis
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TABLE I. The moments of the NNS and NNNS distributions of two independent level sequences of equal
density. The exact values are given under the headings “Two GOE’s.” They are compared to the approxi-
mations(6) or (22). See text. The first column gives the ordeof the moments.

Moment order NNS NNNS
Two GOE’s Eq.(6) Two GOE's Eq.(22)
2 1.4917 1.4831 4.6988 4.7202
3 2.7760 5.9231 12.466 12.442
4 6.0237 5.9231 36.462 36.020
5 14.704 14.403 115.70 112.83
6 39.492 38.587 393.74 378.38
7 114.94 112.17 1424.6 1347.5
8 358.53 349.88 5443.1 5063.4
9 1188.6 1161.3 21844 19975
10 4161.0 4074.7 91668 82375

demonstrated in Fig. 1, which indicates that this is indeed th@etic coupling was achieved by putting the two resonators on

situation for the coupled billiards under consideration.

top of each other, drilling holes through the adjacent walls,

In the experimen{3], two superconducting microwave and allowing one or two superconducting niobium pins to
resonators were electomagnetically coupled. Each resonatpenetrate the two resonators via the holes. The coupling
had the shape of a quarter of a Bunimovich stadium billiardstrength depends on the penetration depthsx,) of the
and was manufactured from niobium sheets. The electromagoupling pin into either resonator. The valuegfandx, in
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FIG. 1. The NNS distributions, calculated using E8). with the
best valuegy, of the parameteq (smooth curvels For comparison,
the empirical distributions obtained in the experim8itare given.

mm are used in the sequel to characterize the physical cou-
pling of the resonators. The experiment provides sets of
spacingss; for each of the coupling$8,0),(5,3),(4,4),(8,6),
and for a coupling by two pins with penetratiof&6). This
strongest coupling is labeled “tw¢8,6).” The number of
levels observed in both resonators together was about 1500.
This large number of levels is crucial for the following
analysis. It is a characteristic feature of experiments with
superconducting microwave cavitifs).

We proceed to the second step of Bayesian inference from
the NNS distribution. It shall express the coupling, (x,)
by the parameteq. To this end, one needs the joint probabil-
ity distribution p(s|q) of the spacings=(s;,S;, . . ..Sn)-
Taking the experimentad; to be statistically independent,
this is

N

p(sia) =11 p(0s). ®)
Bayes’s theorem provides the posterior distribution

P(als)=p(sa)u(a)/M(s) 9

of the parameter) given the events. Here, u(q) is the
so-called prior distribution antﬂﬂ(s)=fép(s|q)#(q)dq is
the normalization. We use Jeffreys’s ryl&0] to find the
prior distribution:

1/2
M(Q)ZUp(SIQ)[(“np(SM)MQ]Zd% : (10)

It ensures—at least approximately—unbiased inferg¢adé

They are represented by histograms and labeled by the physic&f g. We evaluate this integral numerically. It divergesgat
coupling (;,X,). Note, however, that the present analysis does not= 0, where it is proportional to- In g)”2. Otherwise u(q)

make use of a histogram.

is a very slowly varying function. It decreases from the value
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TABLE Il. The best values and errors of the paramef@btained via Bayesian analysis from the NNS
and NNNS distributions of levels of two coupled billiards. The first column gives the physical coupling
(x1,X,) explained in the text. The last two columns are the determinati@nfi@m the previous analysis of
level number varianc&? [2] and the variance of the NNS distribution as explained in Sec. V, respectively.

Coupling NNS NNNS 32 Moments
(8,0 0.52+0.03 0.53:0.03 0.48-0.02 0.5 009
(5,3 0.45+0.03 0.44-0.03 0.42£0.02 0.45-0.10
(4,9 0.43+0.03 0.43:0.03 0.39-0.02 (0.43:0.10
(8,6 0.41+0.03 0.46:0.03 0.34£0.02 0.39£0.10

Two (8,6) 0.34+0.04 0.39£0.03 0.370.10

of 0.5049 aig=0.1 to the minimum of 0.3952 a=0.5and where a=u(q)exd —AN—CN(Q—q)’/M(s) and oy

then monotonically increases to become equal to 0.5717 at 1/\/2BN. In the present analysis, the number of spacings

g=0.9. As a consequencg,q) can be considered constant for each coupling is so largeNe>1500) that a Gaussian

and equal tou(qp) in the present analysis, whegg is not  function (15) very well describes the dependence oP,

far from the value of 0.5. This simplifies the Bayesian analy-which means that the third order term in E@4) is imma-

sis because(q) drops out of Eq(9). Note, however, that terial. It has been introduced to convince ourselves of the

this only seems to make the analysis independent.df is  fact that it is small. Indeed, in the six cases under consider-

the present parametrization that renders the posterior distration, the posterior distribution nearly vanishes except in the

bution nearly independent gf. A reparametrization of the range of the order ofg—qg|<o,=0.03. In this range, the

problem, i.e., the transition from to a monotonic function function w(q) is nearly constant and the quantiN|q

of g, can alter this situation. —0|3<0.002, so thatr can be regarded constant. Its value
To numerically evaluate the posterior distribution, weis

have expressed E) in the form

a=1\2mo,. (16)

p(sq)=e N, (12) o o
Therefore, the parameter distributions obtained in this analy-
where sis are Gaussians. Each one is characterized by a mean value
0o and a variancer,. Table Il gives the values dfjy* o

T
q+§( —q)s

- obtained for each physical coupling. Figure 1 shows a com-
é(q)=q(s)+ Z(l—q)(sz) parison of the NNS distributions calculated by E8). using
the most-probable valueg, of the parameten, together
with the empirical distributions. The empirical distributions
—<In > (12 are given by histograms. We emphasize, however, that the
Bayesian analysis does not make use of the histogram.
: The Gaussian approximatiofiEgs. (15) and (16)] can
Here, the notation only be obtained if the dependence of the prior distribution
N ©(q) on the parameteg can be ignored. This excludes cases
(x)= i 2 X (13) for which the parameteq is expected to be close to zero.
N Bayesian analysis of the? statistic for the same data carried
out in [2] uses the model for symmetry breaking by Leitner
has been used. For each of the six couplings, we found thet al.[12]. The analysis shows that the posterior distribution
function ¢(q) to have a single minimum at, say:=q,. One is different from a Gaussian when the symmetry-breaking
can therefore represent the numerical results if one paranstrength is expected to be zero. The present results together

etrizes¢ as with those of Ref[2] indicate that the posterior distributions
obtained in Bayesian analysis are well represented by Gauss-
#(q)=A+B(q—qo)2+ C(q—qo)°. (14) ian functions except if the true value qfis close to the ends

of the domain where is defined. The meaning of “at the
The values of the coefficientsA(B,C) for the above- end” depends, however, on the amohbf events that one
mentioned six couplings are (0.920,0.392-0.134 has collected: The largé\t is, the closer to the “end” can the

(0.898,0.356-0.057, (0.893,0.328-0.020, (0.891,0.345 true value be for the posterior to be Gaussian.
—0.038, (0.883,0.360,-0.054, and (0.873, 0.268, 0.034
respectively. Substituting Egéll) and(14) into Eqg.(9), we [ll. ANALYSIS OF NNNS DISTRIBUTIONS

obtain As in the preceding section, we start by assigning a prob-

o 2 ability density to the spacing between a given level and the
P(q|s)=ae (497200, (150 level next to its nearest neighbor. This density will parametri-
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cally depend on the coupling parametgrReferencg13]  To obtain an expression valid for &l we multiply the right-
reports a number of models for the calculation of the NNNShand side of Eq(21) by an exponential whose argument is
distributions; but the expressions are quite cumbersome. Wegain a linear superposition of andr,y as in Eq.(3). In
want to have the simplest formula that has as much in comanalogy with Eq(6), the variables is transformed t®/s; in
mon as possible with Eq6) of the preceding section. For order to satisfy the condition that the expectation value of the
this purpose we start from a generalization of Wigner’'s ars is 2. All this finally yields

gument that led to Eq1). The generalization has been pro-
posed by Engeét al.[14]. It is the recursion relation

b T s|?
p(ls)= o q+ 5(1—q)S—J
p(n,s)=r<n,s)f:p<n—1,x)

>< J—
S1

s (s)2
qs—l+z(1—Q)

Xex;{ — f:r(n,y)dy)dx (17)

X s_19 1 5)? 22
ep-ag g (1-a|g) | @

for the nth order level-spacing distribution. The&h order . . .

level repulsion functiom (n,s)ds has been explained in con- The quantitied ands; are determined from the conditions

nection with Eq.(1). Equation(17) was used if15] to pro- . .

pose a generaliz_ation. of_ the_ Wigner surmise for the higher- f p(1s)ds=1 and f sp(ls)ds=2. (23

order level-spacing distribution of chaotic systems. In Ref. 0 0

[15] it was found that Eq(6) yields wrong results for large . ) o

values ofs whenr(0,s) is taken to be proportional te? if ~ Formula(22) interpolates between the Poisson distribu-

B>1. It was therefore assumed in REE5] that Eq.(17) is  tion for the NNNS forg=1 and the generalized Wigner

correct only at small values af This yields within the lead- distribution(20) for g=0. If g=0.5, it provides a good ap-
ing order ins proximation to the NNNS distributions obtained [ih3] for

the superposition of two independent GOE sequences having
s the same density.
p(n,s)ocr(n,s)f p(n—1x)dx for s<1. (18 To show this, we calculated thé&th moment, k
0 =2,...,10, of the NNNS distribution for a superposition of

. . S two GOE level sequences of equal density. The exact expres-
An expression for tha@th order level-spacing distribution of sion is given by Eq(25) of Ref.[13]. In Table | its moments

a system described by the GOE that is valid in the whole :
domain ofs is obtained by multiplying expressiqii8) with are compared (o the moments of the approximaf). The

X . . agreement is good except for the highest moments, which
a Gaussian function of. Moreover, it was assumed [A5] g g P g

. ; . anyway measure the behavior of the distribution at spacings
that the occurrence of consecutive levels in a chaotic syste yway P 9

) lated rand This all ¢ Where the probability density is small.
is an uncorrelated random process. This allows US t0 express »n tha case of the NNS distribution, we sgt=1. The

the_probabil_ityr(n,s) of occurrence _of ther(+1)th level at normalization factor is approximated by
a distances in terms of the probability (0,s) so that

16
r(n,s)=[r(0s)]""* (19 b=—awexp), (24)
a
These assumptions led {i5] to expressions for thath
order level-spacing distributions, with=0, ...,7, for the »=1.038&)+0.4909%1>— 0.56818]°+ 0.71024",
Gaussian orthogonal, unitary, and symplectic ensembles. (25)

They almost perfectly agreed with the exact results reported
in Mehta’s book[7]. In particular, the NNNS distribution where the preexponential factor is chosen such thai{Z).
obtained i 15] for a system described by a GOE is given by yields the GOE result20) whenq=0.

We proceed to the next step of the Bayesian analysis and

16 define the joint distributiom, of s, given the parametey, by
Pw(1s)=ays* eXp( - —sz) : (20)
9 N
wherea,=2(16/9r)2. pl(slq):iljl p(1si). (26)

We can now obtain the NNNS distribution of levels of a
mixed system. Equationd8) and(19) together with the an-  As in Sec. II, the measured spacingsare considered as
satz(2) yield statistically independent events.

, In analogy with Eq(10), the prior distribution is

p(1s)=

a
qs+ Z(l—q)sz} for s<1.

q+ 5 (1-0)s
(21 Ml(Q):|f p(s@)[dInpi(sa)/dql2dgrz  (27)

056221-5



ABUL-MAGD, DEMBOWSKI, HARNEY, AND SIMBEL PHYSICAL REVIEW E 65 056221

It is easy to show by numerical calculation that(q) is a 06 — T T
slowly varying function for 0.£¢g<0.9 and can be consid- 0a | Coupling two (8,6) 1
ered constant in the present context—very much as in Se: o T 9,=0-393 7
[I. Similarly to Eq. (11), the joint probability density of the 02 | |
NNNS is represented as L ]
0.0 1 1 1 t T t
16 N I Coupling (8,6)
pl(squ(—saw) e N, (28) T WO
T
02 | i
where 00 | —
Coupling (4,4) 4
16 , =~ 04 q,=0430
$a(@)=a(s)+ g—(1-a)(s") <
s 02 - 4
m 00 1 1 T t T f
—v—{2Ing+5(1-aq)s i Coupling(5,3) -
04 | q,=0.443 |
v B 4
+In| gs+ Z(l—q)s2 > (29 02 s
00 pe
We numerically evaluate the functiap,(q) and again rep- Coupling (8,0)
resent the results by the parametrizatipp(q)=A;+B;(q 04 ;70499
—07)?+Cy1(q—qy)%. The values of the coefficients 0.2 ]
(A1,B1,C;) for the six physical couplings are
(—0.424,0.520,0.244 (—0.461,0.469,0.247 (—0.457, 0.0
0.443,0.12}1, (—0.473,0.435,0.083 (—0.456,0.446,0.116 0 ! 2 3 4 5
and(—0.491,0.417,0.393respectively. The posterior distri- s
bution for the NNNS is defined in analogy with E@). With FIG. 2. The NNNS distributions, calculated using E2R) with

the help of Eqs(27) and(28), one obtains the best valueg, of the parameteq (smooth curvels For compari-

son, the empirical distributions obtained in the experini@htare

2
P.i(dls) = ale’(q*ql)zlz"l. (30)  given. See the caption of Fig. 1.
Here leads to a somewhat too large mean spacing. We have done
so in order to keep the analysis as simple as possible.
16 \"
1= pa(Q) AW IV. COMPARISON WITH AN ANALYSIS

OF THE NUMBER VARIANCE

xexg —A;N—C;N(q—q,)3]/M(s), (3D
' ! ! ! A Bayesian analysis of the level number variaefor

1 the coupled billiards under consideration are giverdh
Ml(S):J p1(slq) w1 (q)daq, (32  The authors of this paper use a formalism developed by
0 Leitner[12] by applying the perturbation theory to the cou-
pling between two chaotic billiards. Leitner considers a

and Hamiltonian consisting of a sum of a block-diagonal matrix,
representing the case when the symmetry is conserved, and a
o,=1/y2B4N. (33 perturbation responsible for symmetry breaking. When the

symmetry has two eigenvalues, the Hamiltonian takes the
Since o, is small, the dependence ef; on q is negligible  form
and thereforeP; is Gaussian andv; has the valuea;

=1/\2mo;. H 0 0 Vv
: ; 1
In Table Il, the values ofj; ando; are given in the form H :( +e|l 4 ) , (34)
of ;= ;. Figure 2 shows the NNNS distributiomg1,s), 0 H; Vi o

calculated by Eq(22) with g set equal tay,, together with

the empirical distributions. The latter ones are represented byhereH,, H,, andV are GOE matrices having same rms
histograms, although the Bayesian analysis does not refer talue v so thate=1 makesH as a whole to be a GOE

a histogram. In some cases, the theoretical curves are slightigatrix. In the simplest case of two sequences of equal frac-
shifted towards larger spacing. The reason for the shift is thational density, the NNS distributioR, , where the subscript
we have set the quantity in Eq. (22) equal to unity, which L stands for Leitner, is given bj12]
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\/32/\'0

ar _ 2 2 \/;
+gse meps ’merfc(?ch) ,

wherely(x) is a Bessel functionA =(e/D)?, andD is the
mean level spacing. The coefficienty and cp are set so
that P, is normalized ands)=1, respectively. The normal-
ization integral can be solved analytically leading to the fol-
(35 lowing expression focy:

c3s?
16A

2(1+2wA)/16A

P.(s,A)=cnCp se %S

Cp
Cn= , 36
N 115+ 1V2(1+ 7A) (39
3|3 O 1
2| {—4+57—10arctanl/2)}/5m+ 2w A(1+27A) " ¥%F| -, — 1 ————
4°4°7 (1+7A)? @7
C = L
° 1-1/5+12(1+ 7A)
|
where F(a,b;c;z) is the hypergeometric functiofl7]. We fr)+32 1—fir)=32(r 2
have not succeeded in expressing the hypergeometric func- y?= E { coe 1)+ coell " ;( )
tion in the expression focp in terms of elementary func- N & SEoe fr)+ 28 {1- i) +38(r, )

tions. Thus, each term of the distributi@85) contains a (40)
special function of a special function. This makes using Eq.
(35 in a Bayesian analysis of the NNS distribution much 5
more complicated than using E(®). Moreover, its deriva- 91Ven in Table il for N=20. The small values of that

tion does not allow a simple generalization to obtain higherMinimize Eq.(40) justify the approximatior{39). The it
order level-spacing distributions. values ofa almost linearly depend of(1—f) for not-too-

Leitner’s approach leads, on the other hand, to the followSMall values of. We may conclude that E¢38) holds when

ing simple expression for a level-number variance in a spec- a=c,f(1—f) (41)
tral interval of lengthr: !

with respect toa for different values off. The results are

1 with ¢,=8.94+0.04 for 0.2<f<0.5. Comparing Eqs(4)
2 _N2 il + 22 and(41) we obtain the following relation between the param-
L1, @) =2 o)+ —In(1+ %), (38) etersq of Egs. (3) and (22) and the parametes or A of
Leitner’s formulas:
wherea = 7/2(7+ 7w?A) andr is determined by the require-

ment thatEf(r,qr/ZT) coincides with that of two indepen- C3

dent GOE sequences, whil . is the level-number vari- q=Coa= 2N (42)
ance for a GOH16]. This formula has been successfully

used in[2] to obtain the coupling parametér for the bil-  wherec,=2/c, andcs=m/c;. This relation allows the com-

liards presently under consideration by Bayesian inference parison with the previous analysis of the number variance of
We would like to compare the results of the earlier analy-levels of the coupled billiards under considerati@h Table

sis of the number variance reported in R with those of || gives the values ofg calculated by Eq(42) using the

the present analysis of the NNS and NNNS distributions. Fotglues of A reported in[2] from the analysis oB2. These

this purpose, we need a relation between the parametér values are, on the average, 10% smaller than the correspond-

Egs.(3) and(22) and the parameter (or A, equivalently of  ing values obtained in the present analysis of the NNS and

Eqg. (38). We recall that Egs(3) and (22) are used as a NNNS distributions. This difference lies within the statistical
representation for the corresponding formulas for the spacingrrors.

distribution of two independent sequences of fractional den-
sitiesf and 1—f. In the same spirit, we represent the number

. L . V. SUMMARY AND CONCLUSIONS
variance statisti¢38) by a sum of two GOE terms with the

corresponding level densities: The statistical analyses of level-spacing distributions are
among the most popular methods to study systems with
S2(ra)=32,4fr)+32,4{1—flr). (39  mixed regular-chaotic classical dynamics. The distributions

of the data are usually represented in the form of a histo-
We find the relation between the coupling parametefor  gram. A formula that interpolates between the distributions
effective perturbation strength) and the fractional density  for a regular and a chaotic system by tuning a paranteier
by minimizing the quantity adjusted to the empirical histogram. The choice of the bins

056221-7



ABUL-MAGD, DEMBOWSKI, HARNEY, AND SIMBEL PHYSICAL REVIEW E 65 056221

TABLE Ill. Least square fit of Leitner’s formula for the number Table Il. The accuracy obtained for the parametés in the
variance3,? of two chaotic systems interacting with strength ex- range of 6—8 %. Within this error, the values @fobtained
pressed by the parametarto the corresponding formula for two from both observables, the NNS and the NNNS, are in

independent level sequences with fractional densitesd 1-f. agreement—as they should be. They also agree with the out-
come of a previous Bayesian analysis of the number variance
f a X of the levels of the same billiards using a perturbative for-
0.50 2996 6.8910~7 malism developed. by Leitr_ler. This comparison is done by
045 2203 758107 deducing a n_umerlcal relation between the paramgtand
0.40 2138 94%10°7 the perturbation strength.

The accuracy can be compared with that of another way

-6
8'23 igig ;gi 18*6 to obtaing—a way that_ shares yvith Baye_sian inference the
0'25 1'682 4'92* 10-5 feature to bypass the introduction of a hlstogram.' One can
' ‘ ' . calculate the mean square value of the NNS distribution
0.20 1.443 1'19[1075 p(0,s) as a function ofg. From the experimental mean
8'13 (1)';21 ?'gz 18_5 square value together with its error one can then igf@rhe

result is given in Table Il under the heading “Moments.” In

0.05 0.451 1.7610°¢ this case, the accuracy is in the range of 25-30 %. There is
no theorem available that would prove the Bayesian error
terval to be smaller than that obtained with the help of any

will influence the value of the parameter that results from thdNterve h h d d ab H
fit. The present paper suggests using the method of Bayesi puistic—such as the second moment used above. However,

inference for the evaluation of the parameter. This analysi om the expenence that we have ggln_ed in the course of the
deals with the spacings directly, and bypasses the introdudresent study, this may be so. If this Is true, however, then
tion of a histogram. nelther_the_ NNS nor the _NNNS prowd_es the most precise

We have demonstrated the application of the Bayesialqeterm'n"’.‘t'(?n 9f the coup_lmg parametpsince both of them .
analysis by the example of the spacing distributions froyre a statistic, i.e. a function of the primary data set, which is
two weakly coupled superconducting microwave biIIiards.the Spec”.“m as a V‘.’hOIE' One'wc_)uld_ therefore like to base
For the NNS distribution, a formula has been used that wag1e Bayesian analysis on the distribution Of the whol_e Spec-
previously proposed by one of the present authors. This forlrum conditioned by. This model, however, is not available.
mula sets a reasonable approximation for the superposition
of independent sequences of chaotic spectra. We use it to
describe the transition from the two GOE statistics to that of We thank Professor A. Richter and Professor H. A.
a single GOE. For the NNNS distribution, an analogous for\Weidenmilier for encouraging the present project and for
mula has been derived in the present paper. Both distribuaelpful discussions. We thank Dr. H. Alt for valuable sugges-
tions depend on one and the same parantgteat measures tions regarding the experimental setup. A.Y.A.-M. and
the strength of the coupling between both microwave resoM.H.S. acknowledge the financial support granted by Inter-
nators. nationales Brp, Forschungszentrum'lith, and permitting

In the two cases, the prior distributions only weakly de-their stay at the Max-Planck-InstitutrfiKernphysik, Heidel-
pend on the parametgrexcept for the vicinity of the ends 0 berg. Furthermore, the financial support granted by Deutsche
and 1 of its range. The spectra under consideration corré-orschungsgemeinschaft was essential to provide the data-
spond to values of|<0.5. The resulting posterior distribu- base of the present analysis. It was granted under Contracts
tions of g for both the NNS and NNNS cases, are narrowNo. Ri 242/16-1 and No. Ri 242/16-2 in the framework of
Gaussians. Their mean values and variances are given Bonderforschungsbereich 185: Nichtlineare Dynamik.

ACKNOWLEDGMENTS

[1] C. E. Buck, W. G. Cavanagh, and C. D. LittdBayesian Ap- says in Honor of H. Jeffreysedited by A. Zellner(North-
proach to Interpreting Archaeological Dat@/Niley, Chiches- Holland, Amsterdam, 1980
ter, 1996; B. P. Carlin and Th. A. LouisBayes and Empirical [2] C. I. Barbosa and H. L. Harney, Phys. Rev6E 1897(2000.
Bayes Methods for Data Analygi§hapman and Hall, London, [3] H. Alt, C. I. Barbosa, H.-D. Gifa T. Guhr, H. L. Harney, R.
1997; A. B. Gelman, J. S. Carlin, H. S. Stern, and D. B. Hofferbert, H. Rehfeld, and A. Richter, Phys. Rev. L&,
Rubin, Bayesian Data Analysi§Chapman and Hall, New 4847(1998.
York, 1995; H. L. Harney,Bayesian Inference. Data Evalua- [4] A. Y. Abul-Magd, J. Phys. 29, 1 (1996.
tion and DecisiongSpringer, Heidelberg, in pres$. M. Lee, [5] A. Y. Abul-Magd and M. H. Simbel, Phys. Rev. &4, 3293

Bayesian Statistics: An Introductip@nd ed.(Arnold, London, (1996; Phys. Rev. (54, 1675(1996.
1997; A. O’Hagan,Bayesian InferengeKendall's Advanced [6] E. P. Wigner, Oak Ridge National Laboratory Report No.
Theory of Statistics Vol. 2B(Arnold, London, 1994 C. P. ORNL-2309, 1957.

Robert, The Bayesian Choi¢ce2nd ed.(Springer, New York, [7] M. L. Mehta, Random Matrices2nd ed.(Academic, New
2001); Bayesian Analysis in Econometrics and Statistics: Es- York, 1997.

056221-8



BAYESIAN ANALYSIS OF LEVEL-SPACING . .. PHYSICAL REVIEW EG5 056221

[8] A. Y. Abul-Magd and M. H. Simbel, J. Phys. G2, 1043  [11] H. L. Harney, e-print physics/0103030.
(1996); 24, 576 (1998. [12] D. M. Leitner, Phys. Rev. B8, 2536(1993; D. M. Leitner, H.
[9] H.-D. Grd, H. L. Harney, H. Lengeler, C. H. Lewenkopf, C. Koppel, and L. Cederbaum, Phys. Rev. L&, 2970(1994;
Rangacharyulu, A. Richter, P. Schardt, and H. A. Weiden- D. M. Leitner, Phys. Rev. 56, 4890(1997.
muller, Phys. Rev. Lett69, 1296(1992; A. Richter, inEmerg-  [13] A. Y. Abul-Magd and M. H. Simbel, Phys. Rev. &, 4792
ing Applications of Number Thegredited by D. A. Hejhal (2000.
et al, The IMA Volumes in Mathematics and its Applications [14] p. Engel, J. Main, and G. Wunner, J. Phys32 6965(1998.
No. 109 (Springer, New York, 1999 pp. 479-523; C. Dem-  [15] o y_ Abul-Magd and M. H. Simbel, Phys. Rev. €, 5371

bowski, H.-D. Gr# A. Heine, T. Hesse, H. Rehfeld, and A. (1999.
Richter, Phys. Rev. LetB6, 3284(2001. [16] T. Guhr, A. Muler-Groeling, and H. A. Weidenntigr, Phys.
[10] H. Jeffreys, Proc. R. Soc. London, Serl86, 453(1946; H. Rep.299, 189 (1998

Jeffreys, Theory of Probability 3rd ed. (Oxford University
Press, Oxford, 1961 Chap. Ill, Sec. 3.10; see Sec. 5.35 of
O’Hagan in Ref[1].

[17] Handbook of Mathematical Functionsedited by M.
Abramowitz and I. A. SteguDover, New York, 196k

056221-9



